首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3122篇
  免费   493篇
  国内免费   90篇
工业技术   3705篇
  2024年   27篇
  2023年   89篇
  2022年   168篇
  2021年   233篇
  2020年   207篇
  2019年   215篇
  2018年   164篇
  2017年   151篇
  2016年   180篇
  2015年   143篇
  2014年   176篇
  2013年   200篇
  2012年   214篇
  2011年   213篇
  2010年   149篇
  2009年   128篇
  2008年   99篇
  2007年   145篇
  2006年   132篇
  2005年   126篇
  2004年   96篇
  2003年   68篇
  2002年   101篇
  2001年   38篇
  2000年   35篇
  1999年   23篇
  1998年   9篇
  1997年   19篇
  1996年   20篇
  1995年   18篇
  1994年   11篇
  1993年   20篇
  1992年   10篇
  1991年   14篇
  1990年   5篇
  1989年   7篇
  1988年   7篇
  1987年   8篇
  1986年   2篇
  1985年   8篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   8篇
  1977年   1篇
  1951年   4篇
排序方式: 共有3705条查询结果,搜索用时 31 毫秒
1.
2.
The present study aims to utilize the high surface area of the nanotube structure of halloysite (HNTs), an aluminosilicate clay, and conductivity of reduced graphene oxide (rGO) as support material for the deposition of nickel (Ni) and cobalt (Co) nanoparticles. With that aim, a novel bimetallic cathode electrocatalyst, Co–Ni @ HNTs-rGO (Catalyst H3), is developed. This catalyst is characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Transmission Electron Microscopy (TEM). Catalyst H3 demonstrates outstanding oxygen reduction reaction (ORR) activity, electrochemical stability, electrocatalytic performance, and lowest resistance in comparison to the other developed catalysts and conventional Pt/C. Catalyst H3 is used in single-chambered MFCs (microbial fuel cells), where the anode is filled with molasses-laden wastewater. The attained maximum power density in MFC (catalyst H3) is 455 ± 9 mW/m2, which is higher than other catalysts. All the results indicate towards its potential use in MFC application.  相似文献   
3.
The effects of non-thermal plasma (NTP) on the physicochemical properties of wheat flour and the quality of fresh wet noodles ( FWN) were investigated. The results showed that NTP effectively decreased the total plate count (TPC), yeast and mould count (YMC) and Bacillus spp. in wheat flour. Wet gluten contents and the stability time reached the maximum when treated for 20 s. The viscosity of starch increased significantly after treatment due to the increased of damaged starch. The contents of secondary structure were altered to some extent, which was because that the ordered network structure of gluten protein broken. Furthermore, compared with the control, texture properties of FWN were enhanced significantly at 20 s, and the darkening rate of FWN was greatly inhibited due to the low polyphenol oxidase (PPO) activity. Consequently, the most suitable treatment was 500 W for 20 s, providing a basis for the application of NTP in flour products.  相似文献   
4.
5.
A submerged macrophyte sediment microbial fuel cell (SP-SMFC) was constructed in this study. Ceratophyllum demersum L., Vallisneria natans, Hydrilla verticillate were chosen as the submerged plants to form cer-SMFC, val-SMFC, hyd-SMFC systems. Plant groups showed the advantage of bioelectricity generation and pollutants removal compared with the unplanted system. The cer-SMFC group stood out with the maximum power density as 24.56 mW m?2 and the average pollutants removal in overlying water (COD: 81.16%, TN: 65.27%, TP: 79.10%) and in sediments (TN: 26.40%, TP: 21.79%). The determination of root exudates and radial oxygen loss (ROL) demonstrated that C. demersum L. was superior to other studied submerged macrophytes. More root exudates may contribute to an increase in available substrates for electrochemically active bacteria and other microorganisms. Higher enzyme activities were obtained in three SP-SMFCs (especially in cer-SMFC). ATPase and APA activities in cer-SMFC group were increased by over 40% compared with the control. The results indicated that the presence of plants enhanced the microorganism activities, thereby improving bioelectricity generation and pollutants removal. This study will facilitate the application of SP-SMFC technology as an alternative for in situ remediation of polluted sediments.  相似文献   
6.
The advent of high-throughput sequencing methods allowed researchers to fully characterize microbial community in environmental samples, which is crucial to better understand their health effects upon exposures. In our study, we investigated bacterial and fungal community in indoor and outdoor air of nine classrooms in three elementary schools in Seoul, Korea. The extracted bacterial 16S rRNA gene and fungal ITS regions were sequenced, and their taxa were identified. Quantitative polymerase chain reaction for total bacteria DNA was also performed. The bacterial community was richer in outdoor air than classroom air, whereas fungal diversity was similar indoors and outdoors. Bacteria such as Enhydrobacter, Micrococcus, and Staphylococcus that are generally found in human skin, mucous membrane, and intestine were found in great abundance. For fungi, Cladosporium, Clitocybe, and Daedaleopsis were the most abundant genera in classroom air and mostly related to outdoor plants. Bacterial community composition in classroom air was similar among all classrooms but differed from that in outdoor air. However, indoor and outdoor fungal community compositions were similar for the same school but different among schools. Our study indicated the main source of airborne bacteria in classrooms was likely human occupants; however, classroom airborne fungi most likely originated from outdoors.  相似文献   
7.
Microbial growth and fluctuations in environmental conditions have been shown to cause microbial contamination and deterioration of food. Thus, it is paramount to develop reliable strategies to effectively prevent the sale and consumption of contaminated or spoiled food. Responsive packaging systems are designed to react to specific stimuli in the food or environment, such as microorganisms or temperature, then implement an informational or corrective response. Informative responsive packaging is aimed at continuously monitoring the changes in food or environmental conditions and conveys this information to the users in real time. Meanwhile, packaging systems with the capacity to control contamination or deterioration are also of great interest. Encouragingly, corrective responsive packaging attempting to mitigate the adverse effects of condition fluctuations on food has been investigated. This packaging exerts its effects through the triggered release of active agents by environmental stimuli. In this review, informative and corrective responsive packaging is conceptualized clearly and concisely. The mechanism and characteristics of each type of packaging are discussed in depth. This review also summarized the latest research progress of responsive packaging and objectively appraised their advantages. Evidently, the mechanism through which packaging systems respond to microbial contamination and associated environmental factors was also highlighted. Moreover, risk concerns, related legislation, and consumer perspective in the application of responsive packaging are discussed as well. Broadly, this comprehensive review covering the latest information on responsive packaging aims to provide a timely reference for scientific research and offer guidance for presenting their applications in food industry.  相似文献   
8.
9.
Currently, there is little information pertaining to the airborne bacterial communities of green buildings. In this case study, the air bacterial community of a zero carbon building (ZCB) in Hong Kong was characterized by targeting the bacterial 16S rRNA gene. Bacteria associated with the outdoor environment dominated the indoor airborne bacterial assemblage, with a modest contribution from bacteria associated with human skin. Differences in overall community diversity, membership, and composition associated with short (day‐to‐day) and long‐term temporal properties were detected, which may have been driven by specific environmental genera and taxa. Furthermore, time‐decay relationships in community membership (based on unweighted UniFrac distances) and composition (based on weighted UniFrac distances) differed depending on the season and sampling location. A Bayesian source‐tracking approach further supported the importance of adjacent outdoor air bacterial assemblage in sourcing the ZCB indoor bioaerosol. Despite the unique building attributes, the ZCB microbial assemblage detected and its temporal characteristics were not dissimilar to that of conventional built environments investigated previously. Future controlled experiments and microbial assemblage investigations of other ZCBs will undoubtedly uncover additional knowledge related to how airborne bacteria in green buildings may be influenced by their distinctive architectural attributes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号